Properties

Label 384.3993.8.i1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:Q_{16}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 4 & 15 \\ 15 & 28 \end{array}\right), \left(\begin{array}{rr} 3 & 21 \\ 7 & 28 \end{array}\right), \left(\begin{array}{rr} 19 & 8 \\ 24 & 27 \end{array}\right), \left(\begin{array}{rr} 25 & 16 \\ 16 & 9 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_2\times C_4.D_{24}$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2.C_2^6.C_2^3)$
$\operatorname{Aut}(H)$ $D_8:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2\times C_4.D_{24}$
Minimal over-subgroups:$C_6:Q_{16}$$D_{24}:C_2$$D_{24}:C_2$
Maximal under-subgroups:$C_{24}$$C_3:Q_8$$Q_{16}$
Autjugate subgroups:384.3993.8.i1.b1

Other information

Möbius function not computed
Projective image not computed