Properties

Label 384.2163.4.a1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_{12}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{4}, b^{4}, b^{2}cd^{6}, cd^{6}, d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times D_{12}).Q_8$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^9.C_2^5)$
$\operatorname{Aut}(H)$ $C_2^6.(D_6\times S_4)$, of order \(18432\)\(\medspace = 2^{11} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\wr C_2^2\times D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$C_6:D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$(C_2\times D_{12}).Q_8$
Minimal over-subgroups:$(C_2\times C_4):D_{12}$$C_2\times D_{12}:C_4$$C_2\times D_{12}:C_4$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_2\times D_{12}$$C_2\times D_{12}$$C_2^2\times D_6$$C_2\times D_{12}$$C_2\times D_{12}$$C_2\times D_{12}$$C_2\times D_{12}$$C_2\times D_{12}$$C_2^2\times D_4$

Other information

Möbius function$2$
Projective image$C_6:D_4$