Subgroup ($H$) information
| Description: | $C_{12}:C_2^3$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right), \left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
1 & 12 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
5 & 0 \\
0 & 5
\end{array}\right), \left(\begin{array}{rr}
13 & 2 \\
0 & 5
\end{array}\right), \left(\begin{array}{rr}
7 & 8 \\
0 & 11
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{24}:C_2^4$ |
| Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^5.C_2^6.D_6^2$ |
| $\operatorname{Aut}(H)$ | $S_3\times C_2^6:S_4$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $S_3\times C_2^6:S_4$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) |
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
| Centralizer: | $C_2^3\times C_4$ | ||||
| Normalizer: | $C_{24}:C_2^4$ | ||||
| Minimal over-subgroups: | $C_{12}:C_2^4$ | ||||
| Maximal under-subgroups: | $C_4\times D_6$ | $C_2^2\times D_6$ | $C_2^2\times C_{12}$ | $C_6.C_2^3$ | $C_2^3\times C_4$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_4\times D_6$ |