Properties

Label 384.18011.2.d1.d1
Order $ 2^{6} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8\times S_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(2\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 21 & 27 \\ 16 & 11 \end{array}\right), \left(\begin{array}{rr} 17 & 16 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 19 & 5 \\ 7 & 12 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a direct factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times C_8\times S_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7:D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$C_2\times C_8\times S_4$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_2\times C_8\times S_4$
Maximal under-subgroups:$C_4\times S_4$$C_8\times A_4$$A_4:C_8$$C_8\times D_4$$S_3\times C_8$
Autjugate subgroups:384.18011.2.d1.a1384.18011.2.d1.b1384.18011.2.d1.c1

Other information

Möbius function$-1$
Projective image$C_2\times S_4$