Subgroup ($H$) information
Description: | $C_{24}:C_2$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$abc, c^{16}, c^{18}, c^{36}, c^{24}$
|
Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $\OD_{32}.D_6$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4\times C_{12}:C_2^4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Centralizer: | $C_8$ | |||
Normalizer: | $\OD_{32}:S_3$ | |||
Normal closure: | $C_8.D_6$ | |||
Core: | $C_{24}$ | |||
Minimal over-subgroups: | $C_8.D_6$ | |||
Maximal under-subgroups: | $C_{24}$ | $C_4\times S_3$ | $C_3:C_8$ | $\OD_{16}$ |
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_2^3.D_6$ |