Subgroup ($H$) information
Description: | $C_3:\OD_{16}$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$abc^{19}, c^{16}, b^{2}c^{18}, c^{36}, c^{24}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $\OD_{32}.D_6$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2\times C_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Outer Automorphisms: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4\times C_{12}:C_2^4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Centralizer: | $C_8$ | ||
Normalizer: | $\OD_{32}.D_6$ | ||
Minimal over-subgroups: | $C_{12}.D_4$ | $C_8.D_6$ | $C_{12}.D_4$ |
Maximal under-subgroups: | $C_2\times C_{12}$ | $C_3:C_8$ | $\OD_{16}$ |
Other information
Möbius function | $0$ |
Projective image | $C_2^3.D_6$ |