Properties

Label 384.16298.128.a1
Order $ 3 $
Index $ 2^{7} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(128\)\(\medspace = 2^{7} \)
Exponent: \(3\)
Generators: $d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{24}.C_2^4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^3\times C_{16}$
Order: \(128\)\(\medspace = 2^{7} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism Group: $C_4.C_2^7:\GL(3,2)$, of order \(86016\)\(\medspace = 2^{12} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_4.C_2^7:\GL(3,2)$, of order \(86016\)\(\medspace = 2^{12} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6.C_2^6.C_2^2.\PSL(2,7)$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(258048\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3\times C_{24}$
Normalizer:$C_{24}.C_2^4$
Minimal over-subgroups:$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{24}.C_2^4$