Properties

Label 384.1383.2.b1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_4).D_{12}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{12}, c, b^{3}cd^{9}, d^{8}, d^{6}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2^2.(S_3\times D_8)$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^7.C_2^5)$
$\operatorname{Aut}(H)$ $(C_2^9\times S_3).C_2$, of order \(6144\)\(\medspace = 2^{11} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^5\times S_3\times D_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2.(S_3\times D_8)$
Minimal over-subgroups:$C_2^2.(S_3\times D_8)$
Maximal under-subgroups:$C_2\times C_4:C_{12}$$C_6:C_4^2$$C_2^2.D_{12}$$C_2^2.D_{12}$$C_6.C_4^2$$C_2^3.C_2^3$

Other information

Möbius function$-1$
Projective image$S_3\times D_4$