Properties

Label 382205952.bx.93312._.A
Order $ 2^{12} $
Index $ 2^{7} \cdot 3^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{12}$
Order: \(4096\)\(\medspace = 2^{12} \)
Index: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(2\)
Generators: $\langle(2,9)(3,10)(5,18)(6,7)(8,16)(17,24)(19,22)(20,23), (3,10)(5,18)(6,7)(17,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor, a semidirect factor, or almost simple has not been computed.

Ambient group ($G$) information

Description: $C_2^{12}.C_2^5:(\He_3^2:C_4)$
Order: \(382205952\)\(\medspace = 2^{19} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^5:(\He_3^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_3^{12}.C_2^5.A_4$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
Outer Automorphisms: $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(4586471424\)\(\medspace = 2^{21} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ Group of order \(644\!\cdots\!000\)\(\medspace = 2^{66} \cdot 3^{8} \cdot 5^{3} \cdot 7^{4} \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 31^{2} \cdot 73 \cdot 89 \cdot 127 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed