Properties

Label 373248.bu.36.FZ
Order $ 2^{7} \cdot 3^{4} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3.(S_3\times D_4)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(2,18,14)(3,4,17)(5,16,15)(20,22)(21,23), (19,26)(24,25), (4,14)(7,13)(8,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^4.C_6^2:D_4$
Order: \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^4.D_6^2.C_2^3$
$\operatorname{Aut}(H)$ $C_3^4.C_2^6.C_2^6$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$(C_3\times C_6^3).C_2.C_2^5$
Normal closure:$C_3^4.S_4^2:C_2^2$
Core:$C_3^3:S_3$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$8$
Möbius function not computed
Projective image$C_6^4.C_6^2:D_4$