Properties

Label 373248.bm.2304.B
Order $ 2 \cdot 3^{4} $
Index $ 2^{8} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_3$
Order: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Index: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,14,5)(2,16,13)(3,4,15)(6,7,18)(8,10,17)(9,12,11), (1,3,11)(2,10,6)(4,9,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_6^4.C_6^2:D_4$
Order: \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: not computed
Automorphism Group: not computed
Outer Automorphisms: not computed
Derived length: not computed

Properties have not been computed

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_3^2.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $\AGL(4,3)$, of order \(1965150720\)\(\medspace = 2^{9} \cdot 3^{10} \cdot 5 \cdot 13 \)
$W$$C_{3088}.C_{24}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_6^4.C_6^2:D_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_6^4.C_6^2:D_4$