Properties

Label 37044.e.252.f1
Order $ 3 \cdot 7^{2} $
Index $ 2^{2} \cdot 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_{21}$
Order: \(147\)\(\medspace = 3 \cdot 7^{2} \)
Index: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $\left(\begin{array}{rrrr} 2 & 0 & 6 & 0 \\ 0 & 2 & 4 & 6 \\ 1 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 6 & 6 & 5 & 1 \\ 4 & 3 & 4 & 5 \\ 5 & 6 & 6 & 1 \\ 3 & 5 & 3 & 3 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 3 & 1 & 2 & 0 \\ 5 & 0 & 4 & 0 \\ 6 & 6 & 6 & 2 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $\He_7:(C_3^2\times D_6)$
Order: \(37044\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7.(C_6\times S_3^2).C_2$
$\operatorname{Aut}(H)$ $C_6\times F_7$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$W$$C_3\times F_7$, of order \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_{21}$
Normalizer:$C_{21}:C_3\times F_7$
Normal closure:$\He_7:C_3^2$
Core:$C_7$
Minimal over-subgroups:$\He_7:C_3$$C_{21}:C_{21}$$C_7^2:C_3^2$$C_7\times F_7$
Maximal under-subgroups:$C_7^2$$C_{21}$$C_7:C_3$

Other information

Number of subgroups in this autjugacy class$28$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\He_7:(C_3^2\times D_6)$