Properties

Label 37044.e.18.b1
Order $ 2 \cdot 3 \cdot 7^{3} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^2:F_7$
Order: \(2058\)\(\medspace = 2 \cdot 3 \cdot 7^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 2 & 0 & 6 & 0 \\ 0 & 5 & 3 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 5 & 4 & 1 & 0 \\ 6 & 0 & 2 & 0 \\ 3 & 3 & 3 & 1 \end{array}\right), \left(\begin{array}{rrrr} 2 & 3 & 5 & 0 \\ 2 & 4 & 1 & 5 \\ 0 & 6 & 5 & 4 \\ 4 & 0 & 5 & 0 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 6 & 0 \\ 0 & 2 & 4 & 6 \\ 1 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 6 & 6 & 5 & 1 \\ 4 & 3 & 4 & 5 \\ 5 & 6 & 6 & 1 \\ 3 & 5 & 3 & 3 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $\He_7:(C_3^2\times D_6)$
Order: \(37044\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7.(C_6\times S_3^2).C_2$
$\operatorname{Aut}(H)$ $F_7\wr C_2$, of order \(3528\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
$W$$C_7^2:(C_6\times S_3)$, of order \(1764\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{2} \)

Related subgroups

Centralizer:$C_{21}$
Normalizer:$\He_7:(C_3^2\times D_6)$
Complements:$C_3\times C_6$
Minimal over-subgroups:$C_3\times C_7^2:F_7$$C_7^2:(C_3\times F_7)$$\He_7:D_6$
Maximal under-subgroups:$\He_7:C_3$$C_7^2:D_7$$C_7\times F_7$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-3$
Projective image$\He_7:(C_3^2\times D_6)$