Properties

Label 37044.e.12348.d1
Order $ 3 $
Index $ 2^{2} \cdot 3^{2} \cdot 7^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(12348\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{3} \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 3 & 1 & 2 & 0 \\ 5 & 0 & 4 & 0 \\ 6 & 6 & 6 & 2 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $\He_7:(C_3^2\times D_6)$
Order: \(37044\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_7.(C_6\times S_3^2).C_2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{14}:C_3^3$
Normalizer:$C_{14}:C_3^3$
Normal closure:$\He_7:C_3^2$
Core:$C_1$
Minimal over-subgroups:$C_{21}$$C_7:C_3$$C_3^2$$C_3^2$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$98$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$\He_7:(C_3^2\times D_6)$