Properties

Label 370.2.185.a1.a1
Order $ 2 $
Index $ 5 \cdot 37 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(185\)\(\medspace = 5 \cdot 37 \)
Exponent: \(2\)
Generators: $a$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_5\times D_{37}$
Order: \(370\)\(\medspace = 2 \cdot 5 \cdot 37 \)
Exponent: \(370\)\(\medspace = 2 \cdot 5 \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times F_{37}$, of order \(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{10}$
Normal closure:$D_{37}$
Core:$C_1$
Minimal over-subgroups:$D_{37}$$C_{10}$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$37$
Möbius function$1$
Projective image$C_5\times D_{37}$