Properties

Label 360.106.18.b1.a1
Order $ 2^{2} \cdot 5 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a, c^{12}, c^{30}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{60}:S_3$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4\times \AGL(2,3)$
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{20}$
Normalizer:$C_2\times C_{20}$
Normal closure:$C_{30}:S_3$
Core:$C_{10}$
Minimal over-subgroups:$S_3\times C_{10}$$S_3\times C_{10}$$S_3\times C_{10}$$S_3\times C_{10}$$C_2\times C_{20}$
Maximal under-subgroups:$C_{10}$$C_{10}$$C_{10}$$C_2^2$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$-3$
Projective image$C_6:S_3$