Properties

Label 360.106.15.a1.a1
Order $ 2^{3} \cdot 3 $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times S_3$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{15}, c^{30}, c^{40}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{60}:S_3$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4\times \AGL(2,3)$
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$S_3\times C_{20}$
Normal closure:$C_{12}:S_3$
Core:$C_{12}$
Minimal over-subgroups:$S_3\times C_{20}$$C_{12}:S_3$
Maximal under-subgroups:$C_{12}$$D_6$$C_3:C_4$$C_2\times C_4$
Autjugate subgroups:360.106.15.a1.b1360.106.15.a1.c1360.106.15.a1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_{15}:S_3$