Properties

Label 3557376.b.32._.U
Order $ 2^{6} \cdot 3^{2} \cdot 193 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1158}:C_{96}$
Order: \(111168\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 193 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)
Generators: $\left(\begin{array}{rr} 131 & 0 \\ 0 & 121 \end{array}\right), \left(\begin{array}{rr} 49 & 0 \\ 0 & 55 \end{array}\right), \left(\begin{array}{rr} 108 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 85 \end{array}\right), \left(\begin{array}{rr} 1 & 138 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 85 & 0 \\ 0 & 109 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 49 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 108 \end{array}\right), \left(\begin{array}{rr} 186 & 0 \\ 0 & 21 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{37056}.C_{96}$
Order: \(3557376\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{32}$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Automorphism Group: $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2\times C_8$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(227672064\)\(\medspace = 2^{17} \cdot 3^{2} \cdot 193 \)
$\operatorname{Aut}(H)$ $C_{579}.C_{96}.C_2^3$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed