Properties

Label 3557376.a.48._.G
Order $ 2^{7} \cdot 3 \cdot 193 $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_{193}$
Order: \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Generators: $b^{96}, a^{18}b^{6072}, b^{9264}, a^{9}b^{12}, a^{64}, a^{96}b^{8832}, a^{36}b^{3216}, a^{72}b^{9024}, a^{144}b^{10080}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{18528}.C_{192}$
Order: \(3557376\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{48}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Automorphism Group: $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(113836032\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 193 \)
$\operatorname{Aut}(H)$ $C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed