Subgroup ($H$) information
Description: | $C_2\times F_{193}$ |
Order: | \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \) |
Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
Generators: |
$b^{96}, a^{6}b^{5682}, b^{9264}, a^{3}b^{9}, a^{64}, a^{96}b^{2400}, a^{12}b^{11748}, a^{24}b^{4296}, a^{48}b^{5904}$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
Description: | $C_{18528}.C_{192}$ |
Order: | \(3557376\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 193 \) |
Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_{48}$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Automorphism Group: | $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \) |
Outer Automorphisms: | $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(113836032\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 193 \) |
$\operatorname{Aut}(H)$ | $C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Möbius function | not computed |
Projective image | not computed |