Properties

Label 352.71.4.c1.a1
Order $ 2^{3} \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}:C_4$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $ab, b^{2}c^{22}, c^{4}, c^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_4^2:D_{11}$
Order: \(352\)\(\medspace = 2^{5} \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times C_{22}).C_{30}.C_2^2$
$\operatorname{Aut}(H)$ $D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$C_2^2\times F_{11}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2\times D_{22}$, of order \(88\)\(\medspace = 2^{3} \cdot 11 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_4^2:D_{11}$
Minimal over-subgroups:$D_{22}:C_4$$C_{22}.D_4$$C_{22}.D_4$
Maximal under-subgroups:$C_2\times C_{22}$$C_{11}:C_4$$C_2\times C_4$
Autjugate subgroups:352.71.4.c1.b1352.71.4.c1.c1

Other information

Möbius function$2$
Projective image$C_2\times D_{22}$