Properties

Label 352.140.176.a1.a1
Order $ 2 $
Index $ 2^{4} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Exponent: \(2\)
Generators: $b^{2}c^{22}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{11}:C_4\times Q_8$
Order: \(352\)\(\medspace = 2^{5} \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $Q_8\times D_{11}$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Automorphism Group: $C_2\times S_4\times F_{11}$, of order \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Outer Automorphisms: $S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_{33}.C_5.C_2^4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(42240\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{11}:C_4\times Q_8$
Normalizer:$C_{11}:C_4\times Q_8$
Minimal over-subgroups:$C_{22}$$C_2^2$$C_4$$C_4$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$Q_8\times D_{11}$