Subgroup ($H$) information
Description: | $C_1$ |
Order: | $1$ |
Index: | \(350\)\(\medspace = 2 \cdot 5^{2} \cdot 7 \) |
Exponent: | $1$ |
Generators: | |
Nilpotency class: | $0$ |
Derived length: | $0$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, a direct factor, cyclic (hence elementary (for every $p$), hyperelementary, metacyclic, and a Z-group), stem, a $p$-group (for every $p$), perfect, and rational.
Ambient group ($G$) information
Description: | $C_5:D_{35}$ |
Order: | \(350\)\(\medspace = 2 \cdot 5^{2} \cdot 7 \) |
Exponent: | \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_5:D_{35}$ |
Order: | \(350\)\(\medspace = 2 \cdot 5^{2} \cdot 7 \) |
Exponent: | \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Automorphism Group: | $C_5^2:C_4.S_5\times F_7$ |
Outer Automorphisms: | $C_3\times \GL(2,5)$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_5^2:C_4.S_5\times F_7$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_5:D_{35}$ | |||||||
Normalizer: | $C_5:D_{35}$ | |||||||
Complements: | $C_5:D_{35}$ | |||||||
Minimal over-subgroups: | $C_7$ | $C_5$ | $C_5$ | $C_5$ | $C_5$ | $C_5$ | $C_5$ | $C_2$ |
Other information
Möbius function | $875$ |
Projective image | $C_5:D_{35}$ |