Subgroup ($H$) information
Description: | $C_5$ |
Order: | \(5\) |
Index: | \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Exponent: | \(5\) |
Generators: |
$a^{2}b^{7}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_5\times D_{35}$ |
Order: | \(350\)\(\medspace = 2 \cdot 5^{2} \cdot 7 \) |
Exponent: | \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4\times F_5\times F_7$ |
$\operatorname{Aut}(H)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(S)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_5\times C_{35}$ | |
Normalizer: | $C_5\times C_{35}$ | |
Normal closure: | $C_5^2$ | |
Core: | $C_1$ | |
Minimal over-subgroups: | $C_{35}$ | $C_5^2$ |
Maximal under-subgroups: | $C_1$ | |
Autjugate subgroups: | 350.7.70.c1.a1 |
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_5\times D_{35}$ |