Subgroup ($H$) information
Description: | $C_3^3$ |
Order: | \(27\)\(\medspace = 3^{3} \) |
Index: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Exponent: | \(3\) |
Generators: |
$\langle(1,16,7)(2,15,10)(3,5,14)(4,12,8)(6,18,17)(9,11,13)(19,21,20), (1,7,16)(2,10,15)(3,14,5)(4,8,12)(6,17,18)(9,13,11), (1,16,7)(3,5,14)(9,11,13)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
Description: | $S_3\times \He_3^2:D_4$ |
Order: | \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2\times C_3^4:D_4$ |
Order: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_3^4.Q_8.C_6.C_2^4.C_2$ |
Outer Automorphisms: | $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^2.C_3^5.C_2.C_2^5$ |
$\operatorname{Aut}(H)$ | $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \) |
$\card{W}$ | \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Centralizer: | $C_3^4.C_3^3.C_2$ | ||
Normalizer: | $S_3\times \He_3^2:D_4$ | ||
Minimal over-subgroups: | $S_3\times C_3^2$ | ||
Maximal under-subgroups: | $C_3^2$ | $C_3^2$ | $C_3^2$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | not computed |