Properties

Label 34992.kv.1296.A
Order $ 3^{3} $
Index $ 2^{4} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(3\)
Generators: $\langle(1,16,7)(2,15,10)(3,5,14)(4,12,8)(6,18,17)(9,11,13)(19,21,20), (1,7,16)(2,10,15)(3,14,5)(4,8,12)(6,17,18)(9,13,11), (1,16,7)(3,5,14)(9,11,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $S_3\times \He_3^2:D_4$
Order: \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times C_3^4:D_4$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_3^4.Q_8.C_6.C_2^4.C_2$
Outer Automorphisms: $D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_3^5.C_2.C_2^5$
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_3^4.C_3^3.C_2$
Normalizer:$S_3\times \He_3^2:D_4$
Minimal over-subgroups:$S_3\times C_3^2$
Maximal under-subgroups:$C_3^2$$C_3^2$$C_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed