Properties

Label 34992.jf.12.e1
Order $ 2^{2} \cdot 3^{6} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5:D_6$
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(13,17,18), (1,6,5)(2,3,4), (11,14,15)(13,18,17), (2,3)(5,6)(10,17,15)(11,16,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^6:(S_3\times D_4)$
Order: \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\times C_3^5.C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_3\times (C_3\times \PSU(3,2)).S_3^3$
$W$$C_3^4:(C_6\times D_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^6:(S_3\times D_4)$
Minimal over-subgroups:$\He_3.C_3^4.C_2^2$$C_3^3:S_3^3$$C_3^3:S_3^3$$C_3^5:(C_4\times S_3)$
Maximal under-subgroups:$C_3^5:S_3$$C_3^5:C_6$$C_3^5:S_3$$C_3^3:S_3^2$$C_3^3:C_6^2$$C_3^3:S_3^2$$C_3^3:S_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed