Subgroup ($H$) information
| Description: | $C_3^5:D_6$ |
| Order: | \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$\langle(13,17,18), (1,6,5)(2,3,4), (11,14,15)(13,18,17), (2,3)(5,6)(10,17,15)(11,16,18) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $C_3^6:(S_3\times D_4)$ |
| Order: | \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $D_6$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3\times C_3^5.C_6.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_3\times (C_3\times \PSU(3,2)).S_3^3$ |
| $W$ | $C_3^4:(C_6\times D_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |