Subgroup ($H$) information
| Description: | $C_3^5:D_6$ |
| Order: | \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$\langle(1,4,7)(2,3,8)(5,9,6), (1,7,4)(2,3,8), (10,14,12), (1,3,7,2,4,8)(12,14) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $C_3^6:(C_4\times D_6)$ |
| Order: | \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2.S_6$, of order \(839808\)\(\medspace = 2^{7} \cdot 3^{8} \) |
| $\operatorname{Aut}(H)$ | $C_3\times (C_3\times \PSU(3,2)).S_3^3$ |
| $W$ | $C_3^2.S_3^3$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_3^6:(C_4\times D_6)$ |