Subgroup ($H$) information
| Description: | $C_2^2\times \PSL(2,11)$ |
| Order: | \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
| Index: | \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Generators: |
$\langle(3,13)(9,21)(10,11)(12,14), (2,20)(3,13)(9,10)(11,21)(24,25), (1,18)(4,7)(15,22)(16,19), (1,17,7)(4,16,22)(5,19,6)\rangle$
|
| Derived length: | $1$ |
The subgroup is nonabelian, an A-group, and nonsolvable.
Ambient group ($G$) information
| Description: | $\PSL(2,11)^2.D_4$ |
| Order: | \(3484800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
| Exponent: | \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times \PSL(2,11)^2.C_2^2$ |
| $\operatorname{Aut}(H)$ | $S_3\times \PGL(2,11)$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Normal closure: | not computed |
| Core: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Number of subgroups in this conjugacy class | $330$ |
| Möbius function | not computed |
| Projective image | not computed |