Subgroup ($H$) information
| Description: | $D_{44}:C_{36}$ |
| Order: | \(3168\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 11 \) |
| Index: | \(11\) |
| Exponent: | \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \) |
| Generators: |
$\left(\begin{array}{rr}
1 & 0 \\
0 & 334
\end{array}\right), \left(\begin{array}{rr}
256 & 0 \\
0 & 290
\end{array}\right), \left(\begin{array}{rr}
321 & 0 \\
0 & 372
\end{array}\right), \left(\begin{array}{rr}
252 & 0 \\
0 & 282
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 396
\end{array}\right), \left(\begin{array}{rr}
381 & 0 \\
0 & 124
\end{array}\right), \left(\begin{array}{rr}
106 & 0 \\
0 & 255
\end{array}\right), \left(\begin{array}{rr}
0 & 1 \\
1 & 0
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is normal, maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
| Description: | $D_{44}.C_{396}$ |
| Order: | \(34848\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 11^{2} \) |
| Exponent: | \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_{11}$ |
| Order: | \(11\) |
| Exponent: | \(11\) |
| Automorphism Group: | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
| Outer Automorphisms: | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{22}.C_5^2.C_6.C_2^6$ |
| $\operatorname{Aut}(H)$ | $C_{22}.C_{30}.C_2^5$ |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Möbius function | not computed |
| Projective image | not computed |