Subgroup ($H$) information
| Description: | $Q_8:C_6^2$ |
| Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(8,12,14,10)(9,15,11,13), (4,6)(5,7)(8,15,10,14,13,12)(9,11), (4,6)(5,7) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.
Ambient group ($G$) information
| Description: | $C_3\times Q_8:A_4^2$ |
| Order: | \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6.C_3^5.C_2^4$ |
| $\operatorname{Aut}(H)$ | $S_3\times S_4^2$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
| $\operatorname{res}(S)$ | $S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| $W$ | $C_3\times A_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $8$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $C_2^2:A_4^2$ |