Properties

Label 3456.kc.96.h1.a1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:S_3$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(7,8,9,14,13,12)(10,11), (1,5,3)(2,4,6)(7,14)(8,13)(9,12)(10,11), (1,6)(2,3)(4,5)(7,14)(8,9)(12,13), (7,14)(8,13)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_3^2:C_2\wr S_4$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times (C_3\times C_2^4:C_3).D_6^2$
$\operatorname{Aut}(H)$ $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_6.S_3^2$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$D_6$
Normalizer:$C_6:S_3^2$
Normal closure:$(C_3\times Q_8):S_4$
Core:$C_6$
Minimal over-subgroups:$C_6:S_4$$C_3:\GL(2,3)$$C_3^2:D_6$$C_6:D_6$
Maximal under-subgroups:$C_3\times C_6$$C_3:S_3$$C_3:S_3$$D_6$$D_6$$D_6$$D_6$

Other information

Number of subgroups in this conjugacy class$16$
Möbius function$0$
Projective image$(C_6\times D_6):S_4$