Properties

Label 3456.kc.6.i1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_6\times D_{12}):C_2^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(8,13)(9,12), (7,10)(8,12)(9,13)(11,14), (7,8)(9,11)(10,12)(13,14), (9,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^2:C_2\wr S_4$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times (C_3\times C_2^4:C_3).D_6^2$
$\operatorname{Aut}(H)$ $(C_6\times D_4^2).C_2^3$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4:D_4\times D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$(C_6\times D_{12}):D_4$
Normal closure:$(Q_8\times C_3^2):S_4$
Core:$D_4:C_6^2$
Minimal over-subgroups:$(Q_8\times C_3^2):S_4$$(C_6\times D_{12}):D_4$
Maximal under-subgroups:$D_4:C_6^2$$C_6^2.D_4$$C_6^2.D_4$$C_6^2.C_2^3$$C_3\times C_{12}.D_4$$C_3\times D_4:D_4$$(C_3\times D_4):D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$(C_6\times D_6):S_4$