Properties

Label 3456.kc.6.d1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_4^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,13)(9,12), (1,5,3)(2,4,6)(7,13)(8,14)(9,10)(11,12), (3,5)(4,6)(9,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^2:C_2\wr S_4$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times (C_3\times C_2^4:C_3).D_6^2$
$\operatorname{Aut}(H)$ $D_{108}:C_{18}$, of order \(18432\)\(\medspace = 2^{11} \cdot 3^{2} \)
$\card{\operatorname{res}(S)}$\(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_6^2:C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_6\times D_{12}):D_4$
Normal closure:$C_3^2:C_2\wr S_4$
Core:$C_6^2:C_2^2$
Minimal over-subgroups:$(C_6\times D_{12}):D_4$
Maximal under-subgroups:$D_6^2:C_2$$C_2^3.S_3^2$$D_6:D_{12}$$C_6^2.C_2^3$$C_6^2:D_4$$C_6^2.C_2^3$$C_6^2:D_4$$D_6^2:C_2$$C_2^3.S_3^2$$C_2^4:D_6$$C_3:D_4^2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$(C_6\times D_6):S_4$