Properties

Label 3456.cp.96.q1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ad^{9}e^{3}, d^{6}, c^{2}d^{4}, e^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $C_6^2.(D_4\times D_6)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_6^2$
Normalizer:$D_6^2:C_2^2$
Normal closure:$C_3^3:D_4$
Core:$C_6$
Minimal over-subgroups:$C_3^2\times D_6$$D_4\times C_3^2$$D_4\times C_3^2$$C_2\times C_6^2$$C_6\times D_6$$C_6\wr C_2$$C_6:D_6$$C_6\wr C_2$$C_6:D_6$$C_6\wr C_2$$C_6^2:C_2$$C_6^2:C_2$$C_6:C_{12}$$C_6:C_{12}$$C_6\times D_6$$C_6\wr C_2$
Maximal under-subgroups:$C_3\times C_6$$C_3\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$D_6^2:D_6$