Properties

Label 3456.cp.8.cx1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:\SD_{16}$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $abc^{3}e^{3}, c^{2}d^{8}, d^{6}, bc^{3}d^{9}e^{3}, d^{4}, e^{2}, b^{2}e^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2.(D_4\times D_6)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $D_6^2:C_2^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{res}(S)$$D_6^2:C_2^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_6^2:D_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^2.(S_3\times D_4)$
Normal closure:$C_3\times C_6^2.D_4$
Core:$C_3^3:Q_8$
Minimal over-subgroups:$C_3\times C_6^2.D_4$$C_3^2:(S_3\times \SD_{16})$$C_3^2:C_8:D_6$
Maximal under-subgroups:$C_3^3:Q_8$$C_3^3:D_4$$C_3^2:C_{24}$$C_3^2:\SD_{16}$$C_3\times \SD_{16}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$D_6^2:D_6$