Properties

Label 3456.cp.432.ch1
Order $ 2^{3} $
Index $ 2^{4} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ac^{3}d^{6}, d^{3}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $C_6^2.(D_4\times D_6)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$S_3\times Q_8$
Normalizer:$D_{12}:C_2^3$
Normal closure:$C_2.S_3^3$
Core:$C_2$
Minimal over-subgroups:$C_3:Q_8$$C_3\times Q_8$$C_3:Q_8$$D_4:C_2$$D_4:C_2$$D_4:C_2$$D_4:C_2$$D_4:C_2$$C_2\times Q_8$$D_4:C_2$
Maximal under-subgroups:$C_4$$C_4$$C_4$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$D_6^2:D_6$