Properties

Label 3456.cp.4.y1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3.C_2^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab, e^{3}, d^{6}, c^{3}, d^{4}, e^{2}, c^{2}d^{8}, d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^2.(D_4\times D_6)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_3^2.C_2^6.C_2^3$
$\card{\operatorname{res}(S)}$\(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_2^3.S_3^3$
Normal closure:$C_2^3.S_3^3$
Core:$D_6:C_6^2$
Minimal over-subgroups:$C_2^3.S_3^3$
Maximal under-subgroups:$D_6:C_6^2$$D_6:C_6^2$$C_6^3:C_2$$C_6^2.D_6$$C_6^2.D_6$$C_6^2.D_6$$C_3^3:C_4^2$$C_6^2.C_2^3$$C_6^2.C_2^3$$C_2^3.S_3^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_6^2:D_6$