Properties

Label 3456.cp.36.co1
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:D_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ad^{6}e^{3}, d^{4}, d^{6}, c^{3}, d^{3}, b^{2}e^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_6^2.(D_4\times D_6)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $\GL(2,\mathbb{Z}/4):D_6$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2^3\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^3\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{12}:C_2^3$
Normal closure:$C_2^3:S_3^3$
Core:$C_2$
Minimal over-subgroups:$D_{12}:D_6$$D_{12}:D_6$$D_{12}:C_2^3$
Maximal under-subgroups:$D_4:C_6$$S_3\times D_4$$S_3\times D_4$$S_3\times D_4$$C_2\times D_{12}$$S_3\times D_4$$D_{12}:C_2$$C_2\times D_{12}$$D_{12}:C_2$$S_3\times D_4$$S_3\times D_4$$D_{12}:C_2$$D_{12}:C_2$$C_2\times D_{12}$$D_{12}:C_2$$D_4:C_2^2$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$D_6^2:D_6$