Properties

Label 3456.cp.288.cj1
Order $ 2^{2} \cdot 3 $
Index $ 2^{5} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ad^{3}, c^{2}d^{4}e^{2}, d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_6^2.(D_4\times D_6)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_6\times C_{12}$
Normalizer:$C_6^2:C_2^3$
Normal closure:$C_3^3:Q_8$
Core:$C_2$
Minimal over-subgroups:$C_3\times C_{12}$$C_3:C_{12}$$C_3\times D_4$$C_3\times D_4$$C_2\times C_{12}$$C_4\times S_3$$D_{12}$$D_{12}$$C_4\times S_3$
Maximal under-subgroups:$C_6$$C_4$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$D_6^2:D_6$