Properties

Label 3456.cp.216.ct1
Order $ 2^{4} $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, bc^{3}d^{6}e^{3}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_6^2.(D_4\times D_6)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(S)$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_8:C_2^3$
Normal closure:$(C_3\times C_6^2).D_4$
Core:$C_2$
Minimal over-subgroups:$C_3^2:D_8$$C_3:D_8$$D_8:C_2$$C_2\times D_8$$D_8:C_2$
Maximal under-subgroups:$D_4$$D_4$$C_8$

Other information

Number of subgroups in this autjugacy class$108$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$D_6^2:D_6$