Subgroup ($H$) information
Description: | $Q_{16}$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Index: | \(215\)\(\medspace = 5 \cdot 43 \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$ab^{308}, b^{215}$
|
Nilpotency class: | $3$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
Description: | $Q_{16}\times C_{215}$ |
Order: | \(3440\)\(\medspace = 2^{4} \cdot 5 \cdot 43 \) |
Exponent: | \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Quotient group ($Q$) structure
Description: | $C_{215}$ |
Order: | \(215\)\(\medspace = 5 \cdot 43 \) |
Exponent: | \(215\)\(\medspace = 5 \cdot 43 \) |
Automorphism Group: | $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Outer Automorphisms: | $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_{84}\times C_8:C_2^2$ |
$\operatorname{Aut}(H)$ | $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Centralizer: | $C_{430}$ | ||
Normalizer: | $Q_{16}\times C_{215}$ | ||
Complements: | $C_{215}$ | ||
Minimal over-subgroups: | $Q_{16}\times C_{43}$ | $C_5\times Q_{16}$ | |
Maximal under-subgroups: | $Q_8$ | $Q_8$ | $C_8$ |
Other information
Möbius function | $1$ |
Projective image | $D_4\times C_{215}$ |