Properties

Label 3440.a.20.b1.a1
Order $ 2^{2} \cdot 43 $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{86}$
Order: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Generators: $a, b^{860}, b^{40}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_8\times C_{215}$
Order: \(3440\)\(\medspace = 2^{4} \cdot 5 \cdot 43 \)
Exponent: \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{84}\times C_8:C_2^2$
$\operatorname{Aut}(H)$ $S_3\times C_{42}$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2\times C_{42}$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{430}$
Normalizer:$D_4\times C_{215}$
Normal closure:$D_4\times C_{43}$
Core:$C_{86}$
Minimal over-subgroups:$C_2\times C_{430}$$D_4\times C_{43}$
Maximal under-subgroups:$C_{86}$$C_{86}$$C_2^2$
Autjugate subgroups:3440.a.20.b1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_5\times D_4$