Properties

Label 3440.a.172.a1.a1
Order $ 2^{2} \cdot 5 $
Index $ 2^{2} \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $b^{430}, b^{860}, b^{688}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_8\times C_{215}$
Order: \(3440\)\(\medspace = 2^{4} \cdot 5 \cdot 43 \)
Exponent: \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Quotient group ($Q$) structure

Description: $C_2\times C_{86}$
Order: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Automorphism Group: $S_3\times C_{42}$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Outer Automorphisms: $S_3\times C_{42}$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{84}\times C_8:C_2^2$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{1720}$
Normalizer:$D_8\times C_{215}$
Minimal over-subgroups:$C_{860}$$C_5\times D_4$$C_5\times D_4$$C_{40}$
Maximal under-subgroups:$C_{10}$$C_4$

Other information

Möbius function$-2$
Projective image$D_4\times C_{43}$