Properties

Label 3440.a.16.a1.a1
Order $ 5 \cdot 43 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{215}$
Order: \(215\)\(\medspace = 5 \cdot 43 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(215\)\(\medspace = 5 \cdot 43 \)
Generators: $b^{688}, b^{40}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a Hall subgroup.

Ambient group ($G$) information

Description: $D_8\times C_{215}$
Order: \(3440\)\(\medspace = 2^{4} \cdot 5 \cdot 43 \)
Exponent: \(1720\)\(\medspace = 2^{3} \cdot 5 \cdot 43 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Quotient group ($Q$) structure

Description: $D_8$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $D_8:C_2$, of order \(32\)\(\medspace = 2^{5} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{84}\times C_8:C_2^2$
$\operatorname{Aut}(H)$ $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_8\times C_{215}$
Normalizer:$D_8\times C_{215}$
Complements:$D_8$
Minimal over-subgroups:$C_{430}$$C_{430}$$C_{430}$
Maximal under-subgroups:$C_{43}$$C_5$

Other information

Möbius function$0$
Projective image$D_8$