Properties

Label 344.2.86.a1.a1
Order $ 2^{2} $
Index $ 2 \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(86\)\(\medspace = 2 \cdot 43 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{86}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.

Ambient group ($G$) information

Description: $C_{344}$
Order: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Exponent: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_{86}$
Order: \(86\)\(\medspace = 2 \cdot 43 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Automorphism Group: $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{42}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{344}$
Normalizer:$C_{344}$
Minimal over-subgroups:$C_{172}$$C_8$
Maximal under-subgroups:$C_2$

Other information

Möbius function$1$
Projective image$C_{86}$