Subgroup ($H$) information
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(86\)\(\medspace = 2 \cdot 43 \) |
Exponent: | \(2\) |
Generators: |
$a, c^{43}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
Description: | $C_2\times D_{86}$ |
Order: | \(344\)\(\medspace = 2^{3} \cdot 43 \) |
Exponent: | \(86\)\(\medspace = 2 \cdot 43 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $D_{43}$ |
Order: | \(86\)\(\medspace = 2 \cdot 43 \) |
Exponent: | \(86\)\(\medspace = 2 \cdot 43 \) |
Automorphism Group: | $F_{43}$, of order \(1806\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 43 \) |
Outer Automorphisms: | $C_{21}$, of order \(21\)\(\medspace = 3 \cdot 7 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2.C_{129}.C_{42}.C_2$ |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(7224\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 43 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_2\times D_{86}$ | ||
Normalizer: | $C_2\times D_{86}$ | ||
Complements: | $D_{43}$ $D_{43}$ $D_{43}$ $D_{43}$ | ||
Minimal over-subgroups: | $C_2\times C_{86}$ | $C_2^3$ | |
Maximal under-subgroups: | $C_2$ | $C_2$ | $C_2$ |
Other information
Möbius function | $43$ |
Projective image | $D_{43}$ |