Properties

Label 34300.c.980.b1.a1
Order $ 5 \cdot 7 $
Index $ 2^{2} \cdot 5 \cdot 7^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{35}$
Order: \(35\)\(\medspace = 5 \cdot 7 \)
Index: \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \)
Exponent: \(35\)\(\medspace = 5 \cdot 7 \)
Generators: $a^{84}, b^{35}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{245}:C_{140}$
Order: \(34300\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 7^{3} \)
Exponent: \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{35}:C_{28}$
Order: \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Automorphism Group: $C_2\times C_6\times F_5\times F_7$
Outer Automorphisms: $C_2\times C_6\times C_{12}$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{12}\times C_{49}:C_7:C_6\times F_5$
$\operatorname{Aut}(H)$ $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{35}\times C_{490}$
Normalizer:$C_{245}:C_{140}$
Minimal over-subgroups:$C_7\times C_{35}$$C_{245}$$C_{245}$$C_{245}$$C_{245}$$C_5\times C_{35}$$C_{70}$
Maximal under-subgroups:$C_7$$C_5$

Other information

Möbius function$0$
Projective image$C_{245}:C_{28}$