Subgroup ($H$) information
Description: | $C_{35}$ |
Order: | \(35\)\(\medspace = 5 \cdot 7 \) |
Index: | \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \) |
Exponent: | \(35\)\(\medspace = 5 \cdot 7 \) |
Generators: |
$a^{84}, b^{35}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{245}:C_{140}$ |
Order: | \(34300\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 7^{3} \) |
Exponent: | \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_{35}:C_{28}$ |
Order: | \(980\)\(\medspace = 2^{2} \cdot 5 \cdot 7^{2} \) |
Exponent: | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
Automorphism Group: | $C_2\times C_6\times F_5\times F_7$ |
Outer Automorphisms: | $C_2\times C_6\times C_{12}$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times C_{12}\times C_{49}:C_7:C_6\times F_5$ |
$\operatorname{Aut}(H)$ | $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $C_{245}:C_{28}$ |