Properties

Label 340122240.r.51840._.A
Order $ 3^{8} $
Index $ 2^{7} \cdot 3^{4} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description: $C_3^8$
Order: \(6561\)\(\medspace = 3^{8} \)
Index: \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
Exponent: not computed
Generators: $\langle(19,20,21)(22,23,24)(25,26,27)(28,30,29)(31,33,32)(34,36,35)(37,42,44)(38,40,45) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: not computed
Derived length: not computed

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^{10}.S_5.\GL(2,3)$
Order: \(340122240\)\(\medspace = 2^{7} \cdot 3^{12} \cdot 5 \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$5$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $S_5\times C_3^2:\GL(2,3)$
Order: \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Automorphism Group: $S_5\times C_3^2:\GL(2,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $5$

The quotient is nonabelian and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(680244480\)\(\medspace = 2^{8} \cdot 3^{12} \cdot 5 \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed