Subgroup ($H$) information
Description: | $C_3^8$ |
Order: | \(6561\)\(\medspace = 3^{8} \) |
Index: | \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
Exponent: | not computed |
Generators: |
$\langle(4,6,5)(7,8,9)(16,17,18)(19,20,21)(28,29,30)(31,32,33), (4,29,16)(5,28,18) \!\cdots\! \rangle$
|
Nilpotency class: | not computed |
Derived length: | not computed |
The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.
Ambient group ($G$) information
Description: | $C_3^8.C_3^4:C_4^2:C_2^2$ |
Order: | \(34012224\)\(\medspace = 2^{6} \cdot 3^{12} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $C_3^4:C_4^2:C_2^2$ |
Order: | \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_3^4.C_2^3.C_2^5.C_2^4$ |
Outer Automorphisms: | $C_2\wr D_4$, of order \(128\)\(\medspace = 2^{7} \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(1088391168\)\(\medspace = 2^{11} \cdot 3^{12} \) |
$\operatorname{Aut}(H)$ | not computed |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Möbius function | not computed |
Projective image | not computed |