Subgroup ($H$) information
| Description: | $C_{1011}:C_{168}$ |
| Order: | \(169848\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 337 \) |
| Index: | \(2\) |
| Exponent: | \(56616\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 337 \) |
| Generators: |
$b^{12}, a^{63}b^{2019}, a^{12}b^{2022}, b^{1348}, b^{2022}, a^{28}b^{2022}, a^{42}b^{564}$
|
| Derived length: | $2$ |
The subgroup is normal, maximal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $C_{4044}.C_{84}$ |
| Order: | \(339696\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \cdot 337 \) |
| Exponent: | \(56616\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 337 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{2022}.C_{168}.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_{1011}.C_{168}.C_2^3$ |
| $W$ | $C_{337}:C_{84}$, of order \(28308\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 337 \) |
Related subgroups
Other information
| Möbius function | $-1$ |
| Projective image | $C_{674}:C_{84}$ |