Properties

Label 339696.c.2.b1.b1
Order $ 2^{3} \cdot 3^{2} \cdot 7 \cdot 337 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1011}:C_{168}$
Order: \(169848\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 337 \)
Index: \(2\)
Exponent: \(56616\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 337 \)
Generators: $b^{12}, a^{63}b^{2019}, a^{12}b^{2022}, b^{1348}, b^{2022}, a^{28}b^{2022}, a^{42}b^{564}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{4044}.C_{84}$
Order: \(339696\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \cdot 337 \)
Exponent: \(56616\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 337 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2022}.C_{168}.C_2^4$
$\operatorname{Aut}(H)$ $C_{1011}.C_{168}.C_2^3$
$W$$C_{337}:C_{84}$, of order \(28308\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 337 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_{4044}.C_{84}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_{4044}.C_{84}$
Maximal under-subgroups:$C_{1011}:C_{84}$$C_{1011}:C_{56}$$C_{337}:C_{168}$$C_{337}:C_{168}$$C_{337}:C_{168}$$C_{1011}:C_{24}$$C_3\times C_{168}$
Autjugate subgroups:339696.c.2.b1.a1

Other information

Möbius function$-1$
Projective image$C_{674}:C_{84}$